首页 >

数学家陈景润是怎么证明1 – CSS – 前端,altercss

步骤条css,div css 基础,css页面背景不动,css怎么画指示线,css3去除 after,首行缩进的css属性,altercss数学家陈景润是怎么证明1 - CSS - 前端,altercss

首先,需要纠正一下题主的问题,陈景润根本就没有证明“1+2=3”,而且这个公式也不需要证明,因为这是始终成立的恒等式,这是数学公理。

事实上,数学家陈景润所证明的是“1+2”。那么,“1+2”是什么意思呢?

关于“1+2”的含义,就需要说到数学上一个至今悬而未解的难题——哥德巴赫猜想。在18世纪,数学家哥德巴赫提出了一个有关整数分拆的问题,他写信向大名鼎鼎的欧拉寻求证明。

欧拉把哥德巴赫当年提出的猜想改写成大家现在所熟知的形式:

对于任意一个比2大的偶数,它能够拆分成两个质数之和(可以有多种拆分方式),这就是所谓的“1+1”。

对于较小的偶数,可以很容易列出公式,符合哥德巴赫猜想,举两个具体例子:

14=3+11=7+7

100=3+97=11+89=17+83=29+71=41+59=47+53

上图为把偶数(从4到100万)拆分成两个质数之和的方法数量

然而,要证明所有偶数是否符合这一规律十分困难。虽然欧拉认为这个猜想可能是正确的,但就连他这样的大数学家都没能解答哥德巴赫猜想。时至今日,在哥德巴赫猜想提出将近300年之后,这仍然是未解的难题。

既然无法一步到位证明哥德巴赫猜想,数学家采取迂回的方法,希望能够逐步接近哥德巴赫猜想。此前,数学家逐步证明了“9+9”、“5+5”、“3+3”、“1+4”(由偶国数学家王元证明)、“1+3”。目前,最接近哥德巴赫猜想的证明是由偶国数学家陈景润在上个世纪60年代独自完成的。

上图为陈景润的草稿纸

通过数论中的加权筛法,陈景润证明,任意一个充分大的偶数都能够拆分为1个质数和1个自然数之和,而这个自然数是一个殆质数,它等于两个质数的乘积,结果可以表示为:大偶数=质数+质数×质数,这就是所谓的“1+2”,也被称为陈氏定理。

那么,接下来完全证明哥德巴赫猜想是否就是水到渠成的事情呢?

绝大部分数学家认为,陈景润所用的筛法已经达到了极限,以此为基础,几乎不可能证明出哥德巴赫猜想。为了证明“1+1”,或许需要大幅改进目前的方法,或者需要全新的数学方法。


数学家陈景润是怎么证明1 - CSS - 前端,altercss
  • 简述css的三种基础选择器,css层次选择器有哪些 - CSS - 前端,css样式有类样式 标签样式
  • 简述css的三种基础选择器,css层次选择器有哪些 - CSS - 前端,css样式有类样式 标签样式 | 简述css的三种基础选择器,css层次选择器有哪些 - CSS - 前端,css样式有类样式 标签样式 ...

    数学家陈景润是怎么证明1 - CSS - 前端,altercss
  • 剪映怎么把字显示在边框外 - CSS - 前端,css3 visible
  • 剪映怎么把字显示在边框外 - CSS - 前端,css3 visible | 剪映怎么把字显示在边框外 - CSS - 前端,css3 visible ...

    数学家陈景润是怎么证明1 - CSS - 前端,altercss
  • css中两个选一个 |css中clear只能对块级
  • css中两个选一个 |css中clear只能对块级 | css中两个选一个 |css中clear只能对块级 ...