首页 >

Python有哪些数据可视化模块使用起来比较简单 – CSS – 前端,python udp发送视频

python打开图片,python os 教程,python正则表达式 最小匹配,用python画地图,python流程控制例题,aco python,voronoi Python,西宁python招聘,python 最大常量,python 每隔 索引,python udp发送视频css内部样式表,css中blr,css图片嵌套文字,css网页背景满屏,html css js可以干嘛,css网页导航上下抖动晃动,asp html cssPython有哪些数据可视化模块使用起来比较简单 - CSS - 前端,python udp发送视频

最近刚写了一篇Plotly Express文章,希望对你有所帮助。

Plotly Express

Plotly Express是一个新的高级Python数据可视化库,它是Plotly.py的高级封装,它为复杂的图表提供了一个简单的语法。只需一次导入,大多数绘图只要一个函数调用,接受一个整洁的Pandas dataframe,就可以创建丰富的交互式绘图。

Plotly Express 安装

惯例,使用 pip进行安装。

pip install plotly_expressPlotly Express支持构建图表类型scatter:在散点图中,每行data_frame由2D空间中的符号标记表示。scatter_3d:在3D散点图中,每行data_frame由3D空间中的符号标记表示。scatter_polar:在极坐标散点图中,每行data_frame由极坐标中的符号标记表示。scatter_ternary:在三元散点图中,每行data_frame由三元坐标中的符号标记表示。scatter_mapbox:在Mapbox散点图中,每一行data_frame都由Mapbox地图上的符号标记表示。scatter_geo:在地理散点图中,每一行data_frame都由地图上的符号标记表示。scatter_matrix:在散点图矩阵(或SPLOM)中,每行data_frame由多个符号标记表示,在2D散点图的网格的每个单元格中有一个,其将每对dimensions彼此相对绘制。density_contour:在密度等值线图中,行data_frame被组合在一起成为轮廓标记,以可视化该值的聚合函数histfunc(例如,计数或总和)的2D分布z。density_heatmap:在密度热图中,行data_frame被组合在一起成为彩色矩形瓦片,以可视化该值的聚合函数histfunc(例如,计数或总和)的2D分布 z。line:在2D线图中,每行data_frame表示为2D空间中折线标记的顶点。line_polar:在极线图中,每行data_frame表示为极坐标中折线标记的顶点。line_ternary:在三元线图中,每行data_frame表示为三元坐标中折线标记的顶点。line_mapbox:在Mapbox线图中,每一行都data_frame表示为Mapbox地图上折线标记的顶点。line_geo:在地理线图中,每一行都data_frame表示为地图上折线标记的顶点。parallel_coordinates:在平行坐标图中,每行data_frame由折线标记表示,该折线标记穿过一组平行轴,每个平行轴对应一个平行轴 dimensions。parallel_categories:在并行类别(或平行集)图中,每行data_frame与其他共享相同值的行组合,dimensions然后通过一组平行轴绘制为折线标记,每个平行轴对应一个dimensions。area:在堆积区域图中,每行data_frame表示为2D空间中折线标记的顶点。连续折线之间的区域被填充。bar:在条形图中,每行data_frame表示为矩形标记。bar_polar:在极坐标图中,每一行都data_frame表示为极坐标中的楔形标记。violin:在小提琴图中,将data_frame行分组成一个曲线标记,以便可视化它们的分布。box:在箱形图中,行data_frame被组合在一起成为盒须标记,以显示它们的分布。strip:在条形图中,每一行都data_frame表示为类别中的抖动标记。histogram:在直方图中,行data_frame被组合在一起成为矩形标记,以可视化该值的聚合函数histfunc(例如,计数或总和)的1D分布y(或者x如果orientation是’h’)。choropleth:在等值区域图中,每行data_frame由地图上的彩色区域标记表示。

gapminder数据集说明

大家使用gapminder数据集进行体验 Plotly Express 。

gapminder数据集显示2007年按国家/地区的人均预期寿命和人均GDP 之间的趋势:包含1952~2007年世界各国家人口、GDP发展与/地区的人均预期寿命和人均GDP 之间的趋势。

Country:国家,ChinaContinent:洲,AsiaYear:年份,1952LifeExp:预期寿命,44POP:人口,556263527GdpPercap:分均 GDP,400.448611iso_alpha:国家编码,CHNiso_num:国家代码,156上手体验一下,轻松地进行数据可视化。散点图scatter

常用参数说明:

data_frame: 一个’整洁’ pandas.DataFramex:(字符串:列的名称data_frame)此列中的值用于沿笛卡尔坐标沿x轴定位标记。对于水平histogram()s,这些值用作输入histfunc。y:(字符串:列的名称data_frame)此列中的值用于沿笛卡尔坐标中的y轴定位标记。对于垂直histogram()s,这些值用作输入histfunc。color:(字符串:列的名称data_frame)此列中的值用于为标记指定颜色。size:(字符串:列名称data_frame)此列中的值用于指定标记大小。color_continuous_scale:(有效CSS颜色字符串列表)此列表用于在表示的列color包含数字数据时构建连续颜色标度。plotly_express.colors子模块中有各种有用的色标,特别plotly_express.colors.sequential是plotly_express.colors.diverging和plotly_express.colors.cyclical。title:(字符串)图标题。template:(字符串或Plotly.py模板对象)图模板名称或定义。width:(整数,默认None)图形宽度(以像素为单位)。height:(整数,默认600)图形高度(以像素为单位)。

使用散点图描述中国人口与GDP增长趋势图

地理散点图scatter_geo

常用参数说明

data_frame:“整洁”pandas.DataFramelat:(字符串:data_frame)此列的值用于根据地图上的纬度定位标记。lon:(字符串:data_frame)此列的值用于根据地图上的经度定位标记。locations:(字符串:data_frame)该列中的值将根据locationmode并映射到经度/纬度。locationmode:(字符串,“ISO-3”、“美国-州”、“国家名称”之一)确定用于匹配locations地图上的区域。color:(字符串:data_frame)此列的值用于为标记指定颜色。size:(字符串:data_frame)此列的值用于分配标记大小。color_continuous_scale:(有效的css-颜色字符串列表)此列表用于在color包含数字数据。中提供了各种有用的色标。plotly_express.colors子模块,特别是plotly_express.colors.sequential, plotly_express.colors.diverging和plotly_express.colors.cyclical.title:(字符串)图形标题。width:(整数,默认)None)以像素为单位的图形宽度。height:(整数,默认)600)以像素为单位的图形高度。

使用地理散点图描述全球人口与GDP

折线图(line)

常用参数说明

data_frame:“整洁”pandas.DataFramex:(字符串:data_frame)该列的值用于在笛卡尔坐标中沿x轴定位标记。卧式histogram(),这些值用作histfunc.y:(字符串:data_frame)该列的值用于在笛卡尔坐标中沿y轴定位标记。垂直histogram(),这些值用作histfunc.color:(字符串:data_frame)此列的值用于为标记指定颜色。facet_col:(字符串:data_frame)此列中的值用于在水平方向平面子图分配标记。title:(字符串)图形标题。width:(整数,默认)None)以像素为单位的图形宽度。height:(整数,默认)600)以像素为单位的图形高度。

使用折线图描述1952~2007中国与美国人口增长趋势图

条形图(bar)

常用参数说明

data_frame:“整洁”pandas.DataFramex:(字符串:data_frame)该列的值用于在笛卡尔坐标中沿x轴定位标记。卧式histogram(),这些值用作histfunc.y:(字符串:data_frame)该列的值用于在笛卡尔坐标中沿y轴定位标记。垂直histogram(),这些值用作histfunc.color:(字符串:data_frame)此列的值用于为标记指定颜色。facet_row:(字符串:data_frame)此列的值用于向垂直方向上的平面子图分配标记。facet_col:(字符串:data_frame)此列中的值用于在水平方向平面子图分配标记。text:(字符串:data_frame)此列的值以文本标签的形式显示在图中。title:(字符串)图形标题。template:(String或Plotly.py模板对象)图形模板名称或定义。width:(整数,默认)None)以像素为单位的图形宽度。height:(整数,默认)600)以像素为单位的图形高度。

使用条形图描述1952~2007中国与美国人口增长趋势图

等值区域图(choropleth)

常用参数说明

data_frame:“整洁”pandas.DataFramelat:(字符串:data_frame)此列的值用于根据地图上的纬度定位标记。lon:(字符串:data_frame)此列的值用于根据地图上的经度定位标记。locations:(字符串:data_frame)该列中的值将根据locationmode并映射到经度/纬度。locationmode:(字符串,“ISO-3”、“美国-州”、“国家名称”之一)确定用于匹配locations地图上的区域。color:(字符串:data_frame)此列的值用于为标记指定颜色。size:(字符串:data_frame)此列的值用于分配标记大小。color_continuous_scale:(有效的css-颜色字符串列表)此列表用于在color包含数字数据。中提供了各种有用的色标。plotly_express.colors子模块,特别是plotly_express.colors.sequential, plotly_express.colors.diverging和plotly_express.colors.cyclical.title:(字符串)图形标题。width:(整数,默认)None)以像素为单位的图形宽度。height:(整数,默认)600)以像素为单位的图形高度。

使用等值区域图描述各个国家人口数量

若对你有所帮助,欢迎大家评论、留言。

python打开图片,python os 教程,python正则表达式 最小匹配,用python画地图,python流程控制例题,aco python,voronoi Python,西宁python招聘,python 最大常量,python 每隔 索引,python udp发送视频python打开图片,python os 教程,python正则表达式 最小匹配,用python画地图,python流程控制例题,aco python,voronoi Python,西宁python招聘,python 最大常量,python 每隔 索引,python udp发送视频python打开图片,python os 教程,python正则表达式 最小匹配,用python画地图,python流程控制例题,aco python,voronoi Python,西宁python招聘,python 最大常量,python 每隔 索引,python udp发送视频css内部样式表,css中blr,css图片嵌套文字,css网页背景满屏,html css js可以干嘛,css网页导航上下抖动晃动,asp html cssPython有哪些数据可视化模块使用起来比较简单 - CSS - 前端,python udp发送视频


Python有哪些数据可视化模块使用起来比较简单 - CSS - 前端,python udp发送视频
  • CSS左上文字对齐 |css div内边距
  • CSS左上文字对齐 |css div内边距 | CSS左上文字对齐 |css div内边距 ...

    Python有哪些数据可视化模块使用起来比较简单 - CSS - 前端,python udp发送视频
  • 现场管理的要点有哪些 - CSS - 前端,html怎么用css文件怎么打开方式
  • 现场管理的要点有哪些 - CSS - 前端,html怎么用css文件怎么打开方式 | 现场管理的要点有哪些 - CSS - 前端,html怎么用css文件怎么打开方式 ...

    Python有哪些数据可视化模块使用起来比较简单 - CSS - 前端,python udp发送视频
  • 滑板的种类 - CSS - 前端,href怎么连接到css样式
  • 滑板的种类 - CSS - 前端,href怎么连接到css样式 | 滑板的种类 - CSS - 前端,href怎么连接到css样式 ...