首页 >

分库分表思路与解决方案 – 数据库 – 前端|

网络安全如何提高服务,苹果6s plus怎么看cpu,金花关键词怎么样分库分表思路与解决方案 - 数据库 - 前端|分库分表思路与解决方案3.1.水平分库

概念:以字段为依据,按照一定策略(hash、range等),将一个库中的数据拆分到多个库中。

结果:

每个库的结构都一样;

每个库的数据都不一样,没有交集;

所有库的并集是全量数据;

场景:系统绝对并发量上来了,分表难以根本上解决问题,并且还没有明显的业务归属来垂直分库。

分析:库多了,io和cpu的压力自然可以成倍缓解。

3.2.垂直分库

概念:以表为依据,按照业务归属不同,将不同的表拆分到不同的库中。

结果:

每个库的结构都不一样;

每个库的数据也不一样,没有交集;

所有库的并集是全量数据;

场景:系统绝对并发量上来了,并且可以抽象出单独的业务模块。

分析:到这一步,基本上就可以服务化了。例如,随着业务的发展一些公用的配置表、字典表等越来越多,这时可以将这些表拆到单独的库中,甚至可以服务化。再有,随着业务的发展孵化出了一套业务模式,这时可以将相关的表拆到单独的库中,甚至可以服务化。

3.3.水平分表

水平分表又分为 :单库水平分表和多库水平分表。

概念:以字段为依据,按照一定策略(hash、range等),将一个表中的数据拆分到多个表中。

结果:

每个表的结构都一样;

每个表的数据都不一样,没有交集;

所有表的并集是全量数据;

场景:系统绝对并发量并没有上来,只是单表的数据量太多,影响了SQL效率,加重了CPU负担,以至于成为瓶颈。

分析:表的数据量少了,单次SQL执行效率高,自然减轻了CPU的负担。

3.4.垂直分表

概念:以字段为依据,按照字段的活跃性,将表中字段拆到不同的表(主表和扩展表)中。

结果:

每个表的结构都不一样;

每个表的数据也不一样,一般来说,每个表的字段至少有一列交集,一般是主键,用于关联数据;

所有表的并集是全量数据;

场景:系统绝对并发量并没有上来,表的记录并不多,但是字段多,并且热点数据和非热点数据在一起,单行数据所需的存储空间较大。以至于数据库缓存的数据行减少,查询时会去读磁盘数据产生大量的随机读IO,产生IO瓶颈。

分析:可以用列表页和详情页来帮助理解。垂直分表的拆分原则是将热点数据(可能会冗余经常一起查询的数据)放在一起作为主表,非热点数据放在一起作为扩展表。这样更多的热点数据就能被缓存下来,进而减少了随机读IO。拆了之后,要想获得全部数据就需要关联两个表来取数据。但记住,千万别用join,因为join不仅会增加CPU负担并且会讲两个表耦合在一起(必须在一个数据库实例上)。关联数据,应该在业务Service层做文章,分别获取主表和扩展表数据然后用关联字段关联得到全部数据。

3.5.分库分表方案选择

应该使用哪一种方式来实施数据库分库分表,这要看数据库中数据量的瓶颈所在,并综合项目的业务类型进行考虑。

3.5.1.垂直切分方案适用场景

数据库是因为表太多而造成海量数据,并且项目的各项业务逻辑划分清晰、低耦合,那么规则简单明了、容易实施的垂直切分必是首选。


分库分表思路与解决方案 - 数据库 - 前端|
  • 梦枕貘的小说阴阳师出了多少卷 - 数据库 - 前端|
  • 梦枕貘的小说阴阳师出了多少卷 - 数据库 - 前端| | 梦枕貘的小说阴阳师出了多少卷 - 数据库 - 前端| ...

    分库分表思路与解决方案 - 数据库 - 前端|
  • vps有多少个用处比如建网站 - 数据库 - 前端|
  • vps有多少个用处比如建网站 - 数据库 - 前端| | vps有多少个用处比如建网站 - 数据库 - 前端| ...

    分库分表思路与解决方案 - 数据库 - 前端|
  • 量子理论中的不确定性到底是由观察导致的还是微观物质的本质属性 - 数据库 - 前端|
  • 量子理论中的不确定性到底是由观察导致的还是微观物质的本质属性 - 数据库 - 前端| | 量子理论中的不确定性到底是由观察导致的还是微观物质的本质属性 - 数据库 - 前端| ...