然而正如预期的那样,基于深度学习的算法首先需要一个庞大的数据集,这在许多情况下是一种奢侈品。除了继续使用深度学习进行研究外,该公司还将精力集中到了另一个方向。据悉,英伟达在西雅图机器人实验室开发了一种新的算法–6-DoFGraspNet,其能让机器人抓取任意物体。
6-DoFGraspNet的工作如下:机械手观察物体并决定在6D空间(空间中的x、y、z坐标平面和旋转三维空间)中移动到哪里。该算法的设计方式是生成一组可能的握持器并根据需求进行移动。然后,整个握持器通过一个“握持评估器”运行,该评估器会为每个可能的握持分配一个分数。最后,握持评估器通过局部变换调整握持变量进而提高最佳握持的成功率。整个过程如下图所示:
有趣的是,研究人员并没有选择基于深度学习的方法,反倒是选择了“综合训练数据”。英伟达在这当中使用的NvidiaFleX评估法是一种基于粒子的模拟技术,它可以实时生成视觉效果。下面这张动图展示了握持的进化过程:
英伟达的研究人员表示,6-DoFGraspNet最大的优势之一在于它可以用来抓取任意物体;其次是它的模块化,这使得它可以用于各种计算机视觉应用和运动规划算法;第三,它可以跟一个模型一起使用,该模型可根据各种物体的“点云”来分配形状,而这将能确保机械臂不会跟任何障碍物相撞。
据悉,英伟达计划在10月/11月在韩国举行的2019年计算机视觉国际会议上展示这套6-DoFGraspNet。