要求:
1)去掉空行;
2)重复行数据只保留一行有效数据;
3)修改’COMPANY’列的名称为’Company_New‘;
4)并在其后增加六列,分别为’C_col’,‘D_col’,‘E_col’,‘F_col’,‘G_col’,‘H_col’。
一,使用pythonPandas来处理:importpandasaspd
importnumpyasnp
frompandasimportDataFrame,Series
defdeal_with_data(filepath,newpath):
file_obj=open(filepath)
df=pd.read_csv(file_obj)#读取csv文件,创建DataFrame
df=df.reindex(columns=[‘CNUM’,’COMPANY’,’C_col’,’D_col’,’E_col’,’F_col’,’G_col’,’H_col’],fill_value=None)#重新指定列索引
df.rename(columns={‘COMPANY’:’Company_New’},inplace=True)#修改列名
df=df.dropna(axis=0,how=’all’)#去除NAN即文件中的空行
df[‘CNUM’]=df[‘CNUM’].astype(‘int32’)#将CNUM列的数据类型指定为int32
df=df.drop_duplicates(subset=[‘CNUM’,’Company_New’],keep=’first’)#去除重复行
df.to_csv(newpath,index=False,encoding=’GBK’)
file_obj.close()
if__name__==’__main__’:
file_path=r’C:\Users\12078\Desktop\python\CNUM_COMPANY.csv’
file_save_path=r’C:\Users\12078\Desktop\python\CNUM_COMPANY_OUTPUT.csv’
deal_with_data(file_path,file_save_path)
二,使用VBA来处理:OptionBase1
OptionExplicit
Submain()
OnErrorGoToerror_handling
DimwbAsWorkbook
Dimwb_outAsWorkbook
DimshtAsWorksheet
Dimsht_outAsWorksheet
DimrngAsRange
DimusedrowsAsByte
Dimusedrows_outAsByte
Dimdict_cnum_companyAsObject
Dimstr_file_pathAsString
Dimstr_new_file_pathAsString
‘assignvaluestovariables:
str_file_path=”C:\Users\12078\Desktop\Python\CNUM_COMPANY.csv”
str_new_file_path=”C:\Users\12078\Desktop\Python\CNUM_COMPANY_OUTPUT.csv”
Setwb=checkAndAttachWorkbook(str_file_path)
Setsht=wb.Worksheets(“CNUM_COMPANY”)
Setwb_out=Workbooks.Add
wb_out.SaveAsstr_new_file_path,xlCSV’createacsvfile
Setsht_out=wb_out.Worksheets(“CNUM_COMPANY_OUTPUT”)
Setdict_cnum_company=CreateObject(“Scripting.Dictionary”)
usedrows=WorksheetFunction.Max(getLastValidRow(sht,”A”),getLastValidRow(sht,”B”))
‘renametheheader’COMPANY’to’Company_New’,removeblank&duplicatelines/rows.
Dimcnum_companyAsString
cnum_company=””
ForEachrngInsht.Range(“A1”,”A”&usedrows)
IfVBA.Trim(rng.Offset(0,1).Value)=”COMPANY”Then
rng.Offset(0,1).Value=”Company_New”
EndIf
cnum_company=rng.Value&”-“&rng.Offset(0,1).Value
IfVBA.Trim(cnum_company)<>”-“AndNotdict_cnum_company.Exists(rng.Value&”-“&rng.Offset(0,1).Value)Then
dict_cnum_company.Addrng.Value&”-“&rng.Offset(0,1).Value,””
EndIf
Nextrng
‘loopthekeysofdictsplitthekeyesby’-‘intocnumarrayandcompanyarray.
Dimindex_dictAsByte
Dimarr_cnum()
Dimarr_Company()
Forindex_dict=0ToUBound(dict_cnum_company.keys)
ReDimPreservearr_cnum(1ToUBound(dict_cnum_company.keys)+1)
ReDimPreservearr_Company(1ToUBound(dict_cnum_company.keys)+1)
arr_cnum(index_dict+1)=Split(dict_cnum_company.keys()(index_dict),”-“)(0)
arr_Company(index_dict+1)=Split(dict_cnum_company.keys()(index_dict),”-“)(1)
Debug.Printindex_dict
Next
‘assignsthevalueofthearraystothecelles.
sht_out.Range(“A1”,”A”&UBound(arr_cnum))=Application.WorksheetFunction.Transpose(arr_cnum)
sht_out.Range(“B1”,”B”&UBound(arr_Company))=Application.WorksheetFunction.Transpose(arr_Company)
‘add6columnstooutputcsvfile:
Dimarr_columns()AsVariant
arr_columns=Array(“C_col”,”D_col”,”E_col”,”F_col”,”G_col”,”H_col”)’
sht_out.Range(“C1:H1”)=arr_columns
CallcheckAndCloseWorkbook(str_file_path,False)
CallcheckAndCloseWorkbook(str_new_file_path,True)
ExitSub
error_handling:
CallcheckAndCloseWorkbook(str_file_path,False)
CallcheckAndCloseWorkbook(str_new_file_path,False)
EndSub
‘辅助函数:
‘GetlastrowofColumnNinaWorksheet
FunctiongetLastValidRow(in_wsAsWorksheet,in_colAsString)
getLastValidRow=in_ws.Cells(in_ws.Rows.count,in_col).End(xlUp).Row
EndFunction
FunctioncheckAndAttachWorkbook(in_wb_pathAsString)AsWorkbook
DimwbAsWorkbook
DimmywbAsString
mywb=in_wb_path
ForEachwbInWorkbooks
IfLCase(wb.FullName)=LCase(mywb)Then
SetcheckAndAttachWorkbook=wb
ExitFunction
EndIf
Next
Setwb=Workbooks.Open(in_wb_path,UpdateLinks:=0)
SetcheckAndAttachWorkbook=wb
EndFunction
FunctioncheckAndCloseWorkbook(in_wb_pathAsString,in_savedAsBoolean)
DimwbAsWorkbook
DimmywbAsString
mywb=in_wb_path
ForEachwbInWorkbooks
IfLCase(wb.FullName)=LCase(mywb)Then
wb.Closesavechanges:=in_saved
ExitFunction
EndIf
Next
EndFunction
三,输出结果:
两种方法输出结果相同:
四,比较总结:
Pythonpandas内置了大量处理数据的方法,大家不需要重复造轮子,用起来很方便,代码简洁的多。
ExcelVBA处理这个需求,使用了数组,字典等数据结构(实际需求中,数据量往往很大,所以一些地方没有直接使用遍历单元格的方法),以及处理字符串,数组和字典的很多方法,对文件的操作也很复杂,一旦出错,调试起来比python也较困难,代码已经尽量优化,但还是远比Python要多。