大数据促进金融业创新的维度主要有以下四个方面。
(一)可扩展性开放架构支撑金融业发展
金融企业的IT设施更易于数据的集中、扩展是大数据技术的必然要求,而且还要求要管理过程当中具备更加优质的可靠、可控和安全性。近年来,随着x86架构CPU处理器制程、内部计算架构设计推陈出新,性能已逐渐赶上RISC服务器,同时,在稳定性、可用性及服务性也足以胜任海量数据对基础架构能力的要求,因此,具备高扩展性的开放架构正逐步成为金融行业应对大数据的优选方案。
(二)促进金融业风险管控、精细化管理、业务创新
第一,业务的精细化管理及风险的有效控制可以使用大数据技术有效完成。利率市场化大背景下的中国银行业需要重塑其精细化流程管理,实现精准营销;
第二,大数据技术支持的服务创新体系,可以更好地做到以“客户为中心”,通过对客户消费行为的分析,提高客户粘性,实现金融机构的差异化竞争。
(二)推进高频金融交易、小额信贷等业务创新
大数据技术在金融行业的运用已逐步展开,并开始取得了一些良好的成效,特别是一些典型的数据类业务:高频交易、小贷风控和精准营销等都有效地利用了大数据的优势。
例如,中国A股市场每天4个小时的交易都会产生约3亿条以上的交易数据,随着时间的推移,积累的数据量将会越来越多。
这些数据可以被用于进行数据挖掘和创新,实现创造和量化投资交易模型,将其应用于真正的投资活动过程当中,以期为企业和投资者创造利润。
阿里巴巴与建设银行联手在2007年推出专注于小额信贷的——E贷通,根据阿里巴巴大量用户数据、交易记录,建设银行进行数据挖掘,以判断是否应当给该网络店铺或网商提供贷款;
微众银行在消费金融层面不断使用大数据,2016年5月15日,微粒贷上线一周年累计放贷超400亿,贷款笔数超500万笔,单笔金额7000-8000元之间,共计1600亿,日贷款规模超过10亿,日均贷款余额500亿,利率0.05%,不良资产率不足0.4%,低于普通商业银行的水平,大数据技术的效果明显。
(四)促进金融业的精准营销
招商银行在数据挖掘过程当中发现招行信用卡额度较高的优质客户经常出现在星巴克和麦当劳等场所后,通过“多倍积分累计”和“积分店面兑换”活动吸引优质客户;
另外,其还构建出有效的客户流失预警模型,对即将出现流失的前20%客户发出售高收益理财产品或采取免手续费等策略进行挽留,使招行信用卡和金卡客户流失率降低15%左右;
同时,还通过小微企业主持有信用卡的个人消费活动识别消费行为习惯优质的小微客户,利用远程银行和云计算等实行交叉营销,取得了非常良好的效果。