目前使用的是围绕客户周围的与客户信用情况高度相关的数据,利用数据实施科学风控。
1、大数据征信模型可以使信用评价更精准:大数据征信模型将海量数据纳入征信体系,并以多个信用模型进行多角度分析。
2、大数据征信能纳入更为多样性的行为数据:大数据时代,每个相关机构都在最大程度上设法获取行为主体的数据信息,使数据在最大程度上覆盖广泛、实时鲜活。
3、大数据征信带来了更为时效性的评判标准:传统风控的另外一个缺点是缺乏实效性数据的输入,其风控模型反映的往往是滞后数据的结果。利用滞后数据的评估结果来管理信用风险,本身产生的结构性风险就较大。